minibrowser
----------------------------------------------------------------
Skin: Euclideamp Geometry
Author: jjpotter
Development Help: Skinlove Forum
----------------------------------------------------------------
Features:
-Cursors
-Mikroamp
-Support for Winamp 2.9
-Virtuous animations
-Mind-enriching theorems
-NUMBERS.bmp and AVS.bmp for those with older versions of Winamp
Optional Components (in "Additional Components" folder):
-NUMS_EX.bmp = roman numerals instead of decimal numbers
-EQMAIN.bmp = eq without shaded areas when eq sliders are moved.
----------------------------------------------------------------
For all you aspiring mathematicians: Check out this proof
Proof that 2=1
a=b
(a)*a=b*(a) -multiply by (a)-
-> a^2=ab
a^2-(b^2)=ab-(b^2) -subtract (b^2) from both sides-
-> a^2-b^2=ab-b^2
(a+b)*(a-b)=b*(a-b) -factor out (a-b) from both sides-
-> (a+b)*(a-b)=b*(a-b)
(a+b)=b -cancel out (a-b) from both sides-
-> a+b=b
b+b=b (since a=b)
-> 2b=b
2=1 -cancel out b's-
Figure that one out
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737 Hint: (a-b)?
----------------------------------------------------------------
Elevate 1.0 by Craig Dickson
Based on ELAN*TV 2.0 by Oleg M. Petrovsky
ELAN*TV 2.0 was a great skin, but it didn't do
the AVS, and there were a few things about it
that I wanted to change just as matters of
personal taste. Elevate 1.0 is the res ...
you are going to install Eye on Springfield 7.2
be enjoy with it!
info-is@in-file
; Created by Jebbediah
[Normal]
NumPoints=48
PointList=13,0,13,1,12,1,12,2,11,2,11,3,7,3,7,4,6,4,6,5,5,5,5,9,6,9,6,10,7,9,7,11,5,11,5,12,4,12,4,13,3,13,3,15,4,15,4 ...